Pulmonary “Tests”

“What a Loyola MS 3 should know about Oxygenation, CO₂ elimination, and PFT’s”

Learning Objectives

- Oxygenation:
 - Distinguish the various mechanisms of hypoxia
 - Know how to calculate the A-a Gradient
 - Understand oxygen content, delivery, and extraction
 - Recognize the various oxygen delivery devices

- CO₂ Elimination:
 - Know the principles determining one’s CO₂
 - Understand the concept of Dead Space Ventilation

- PFT’s:
 - Be able to interpret PFT’s recognizing Obstruction, Restriction, and Diffusion Impairments
Approach to Hypoxemia

- **Disease-Based**
 - COPD/Asthma
 - Pulmonary Edema
 - ARDS
 - Pneumonia
 - ILD
 - Hypoventilation
 - Altitude
 - Decreased FIO2
 - Cirrhosis
 - Pulmonary Embolism

- **Mechanism-Based**
 - VQ Mismatch
 - Shunt
 - Diffusion Impairment
 - Hypoventilation
 - Decreased Barometric Pressure
 - Decreased FIO2
 - Diffusion-Perfusion Impairment
 - Mixed ?

Normal Physiology

- No obstruction
- No alveolar filling process
- No diffusion barrier

- Ventilation roughly equals Perfusion
 - More of both at the bases
 - Less of both at the apices

- O2 from the bronchus enters the alveolus as rapidly as O2 leaves into the pulmonary capillaries/systemic circulation

\[P_{mvO_2} = 40 \text{ mmHg} \quad P_sO_2 = 100 \text{ mm Hg} \]
Mechanisms of Hypoxia:

VQ Mismatch
- Decreased V relative to Q
- O₂ exits alveolus more quickly than enters via bronchi
- Hypoxia is MILD
- Hypoxia improves with supplemental O₂
- Causes:
 - Asthma, COPD
 - Pulmonary Emboli
 - ILD

Shunt
- No O₂ reaches some set of pulmonary capillaries
- Hypoxia is SEVERE
- Hypoxia does NOT improve with supplemental O₂
- Causes:
 - Pulmonary Shunt:
 - NO ventilation to alveoli that are still perfused
 - Blood
 - Pus
 - Water
 - Pulmonary Edema
 - ARDS
 - Atelectasis
 - Pulmonary AVM
 - Cardiac Shunt
 - PFO, ASD, VSD
Mechanisms of Hypoxia: Diffusion Impairment

- NOT a common problem
 - Blood is normally fully oxygenated within 25% of its transit through the alveolar capillaries.
 - Therefore, even if slowed by a diffusion barrier, blood usually reaches full saturation

- Hypoxia is MILD
- Hypoxia improves with supplemental O₂
Mechanisms of Hypoxia:
Diffusion-Perfusion Impairment

- Seen occasionally in cirrhosis
- Dilated capillaries pose an impairment to full oxygenation

Mechanisms of Hypoxia

- VQ Mismatch
- Shunt
 - Diffusion Impairment
 - Diffusion-Perfusion Impairment
- Hypoventilation
- Altitude
- Decreased F_1O_2
The A-a Gradient

Why?

Two Questions

1. Which of these people has a lower than expected P_aO_2?
 A. A MS3 in SSOM with a $P_aO_2 = 95$
 B. 70 yo Doc Hering in SSOM with a $P_aO_2 = 80$
 C. 50 yo very athletic lung doc in an airplane with a $P_aO_2 = 50$
 D. A MS3 running at top speed with a $P_aO_2 = 70$

2. Which ABG illustrates abnormal O_2 Transfer from Alveolus to Capillary?

<table>
<thead>
<tr>
<th>$PaCO_2$</th>
<th>PaO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 40</td>
<td>95</td>
</tr>
<tr>
<td>B. 60</td>
<td>70</td>
</tr>
<tr>
<td>C. 20</td>
<td>95</td>
</tr>
</tbody>
</table>

Write your answers down…
The A-a Gradient

Why?
To answer the question:
- Is the measured PaO2 what it should be?

What should the measured PaO2 be?
- That Depends….
 - On a lot of things:
 - Age
 - Barometric pressure
 - FIO2
 - \(p_aCO_2 \)
 - RQ
 - i.e., the components of the A-a Gradient equation
A-a Gradient

- Assesses the efficiency of oxygen transfer from the atmosphere to the arterial circulation.
 - In health, O₂ from the atmosphere moves to the alveoli and then efficiently crosses into the pulmonary capillaries.
 - i.e., there is only a small A-a Gradient.
 - Why any gradient?
 - Physiologic Shunt that increases with age
 - Normal = (Age/4) + 4
 - When the A-a Gradient is greater than normal, then – and only then – is there a barrier to O₂ transfer.

A-a Gradient

- We calculate what the Alveolar O₂ ought to be
- We measure the arterial PO₂
- The Difference is the A-a Gradient.

- So, how do we calculate what the Alveolar O₂ ought to be.....
1. What is the normal pO_2 in the atmosphere?

- **Atmospheric Gases**
 - $P_B = 760$ torr at sea level
 - Composition:
 - $O_2 = 21\%$
 - $N_2 = 79\%$
 - Everything else is so trivial as to be measured in PPB
 - Thus, the $P_{atm}O_2 = P_B \times F_{O2} = 760 \times .21 = 160$
Atmospheric gas is humidified as it traverses the pharynx, trachea, and bronchial tree:
- At body temperature at sea level, fully humidified air has a $P_{H_2O} = 47$ torr
- Thus, the pO_2 of the air reaching the alveoli is:

$$pO_2 = (P_B - P_{H_2O}) \times F_{I O_2}$$
$$= (760 - 47) \times .21$$
$$= 150$$

2. What is the normal pO_2 entering the alveolus?

3. What is the normal pO_2 actually in the alveolus available to oxygenate the venous blood?

Finally, alveolar gas has CO$_2$ added and O$_2$ and removed.

Thus, Alveolar O$_2$ is:

$$P_{AlvO_2} = [(P_B - P_{H2O}) \times F_{I O_2}] - (P_{a CO_2}/RQ)$$
$$[(760 - 47) \times .21] - (P_{a CO_2}/RQ)$$
$$150 - (P_{a CO_2}/RQ)$$

“normally” $P_{a CO_2}/RQ = 40/0.8 = 50$

Therefore, P_{AlvO_2} normally* = 150 - 50 = 100

*For people breathing room air at sea level

....P_B, $F_{I O_2}$, $P_{a CO_2}$, and RQ can all be manipulated
The A-a Gradient Formula:

- Conceptually:
 - What is the O_2 gradient between an ‘ideal’ alveolus and the pulmonary capillaries

- Mathematically:
 - $P_{Alv}O_2 - P_{a}O_2$
 - $\left\{ \left[(P_B - P_{H2O}) \times F_{O2} \right] - (P_{a}CO_2/RQ) \right\} - P_{a}O_2$

- = 150 if sea level and room air

- $P_{a}CO_2$ from ABG; RQ = 0.8

- $P_{a}O_2$ from ABG
1. Which of these people has a lower than expected PaO₂?

A. A MS3 in SSOM with a pₐO₂ = 95
B. 70 yo Doc Hering in SSOM with a pₐO₂ = 80
C. 50 yo athletic lung doc in an airplane with a pₐO₂ = 50
D. A MS3 running at top speed with a pₐO₂ = 70

@ sea level, on room air, normal CO₂ and RQ means Alveolar PO₂ should be @ 100 mm Hg

- A-a = 100-95 = 5... normal
- A-a = 100-80 = 20
 - Age/4 + 4 = 21.5..... Normal
- At 8000 feet, PB is only 565
 - (565-47) * 0.21 – (40/0.8) = 59
 - 59-50 = 9 Normal
- To repeat, normal people don’t desaturate... ABNORMAL

Two Questions

2. Which ABG illustrates abnormal O₂ Transfer from Alveolus to Capillary?

PaCO₂ PaO₂ A-a Barrier?
A. 150-40/0.8 = 100 95 5 NO
B. 150-60/0.8 = 75 70 5 NO
C. 150-20/0.8 = 125 95 30 YES

Patient A is simply what we expect
Patient B is simply hypoventilating
Patient C is has SIGNIFICANTLY abnormal oxygen transfer despite an overtly normal PaO₂!!!
Clinical Question

- Treatment for pneumocystis pneumonia in a patient whose ABG is 7.48/30/70?

How to describe the “degree” of hypoxia

- The “P/F” Ratio
 - $P_a O_2/F_i O_2$
 - Normally…
 - $P_a O_2/F_i O_2 = 100/0.2 = 500$
 - Lower P/F Ratios imply worsening degrees of hypoxia
 - P/F < 200 is bad enough hypoxia to count as ARDS
Other Oxygen Issues:

- **Oxygen Content:**
 - i.e., How many mL of O₂ are in each dL of
 - arterial blood?
 - venous blood?

- **Oxygen Delivery:**
 - How many mL of O₂ are delivered per minute to the tissues?

- **Oxygen Extraction:**
 - What percent of the delivered O₂ is extracted by the tissues at rest?

How are these numbers useful clinically?

Oxygen Content

- **Conceptually:**
 - Oxygen is carried in the blood as both:
 - Hemoglobin-Bound Oxygen
 - Dissolved Oxygen
Oxygen Content

- Mathematically:
 - \(C_xO_2 = (Hgb)(S_xO_2)(1.34) + (P_xO_2)(0.003)\)
 - \(C_aO_2 = (15)(1)(1.34) + (95)(0.003)\)
 \(\approx 20 \text{ mL } O_2/\text{dL Blood}\)
 - \(C_{mv}O_2 = (15)(0.75)(1.34) + (40)(0.003)\)
 \(\approx 15 \text{ mL } O_2/\text{dL blood}\)
 - \(D_{a-v}O_2 = C_aO_2 - C_{mv}O_2\)
 \(= 20 - 15 = 5 \text{ mL } O_2/\text{dL blood}\)
 - i.e., the difference in \(O_2\) content between arterial and venous blood

Oxygen Delivery

- Conceptually:
 - The amount of oxygen delivered to the tissues is the product of cardiac output and oxygen content.
- Mathematically:
 - \(D_aO_2 = C.O. \times C_aO_2\)
 \(= 5 \text{ Lpm} \times 20 \text{ mL } O_2/\text{dL} \times 10 \text{ dL/L}\)
 \(= 1000 \text{ mL } O_2/\text{min}\)
Oxygen Extraction

- VO$_2$ = Oxygen Consumption
 - Normal = 250 cc/min at rest

- Extraction Ratio
 - % of delivered oxygen actually consumed
 - At rest:
 - 250 cc/min consumed
 - 1000 cc/min delivered
 - ER = 25%
 - Can increase to 75%

Oxygen Content, Delivery, Extraction: Summary

- Evidence of Inadequate Delivery relative to Consumption:
 - ↓$C_{mv}O_2$
 - ↑$D_{a-v}O_2$
 - ↑ ER
Oxygen Delivery Devices

- Nasal Cannula
 - 24-44% F_iO_2
 - ? F_iO_2 per liter

- Simple Face Mask
 - 40 –60% F_iO_2
Oxygen Delivery Devices

- Nasal Cannula
 - 24-44% FiO2
- Simple Face Mask
 - 40 –60% FiO2
- Non-Rebreather Mask
 - “reservoir” with one-way valve
 - 60-100% FiO2

Oxygen Delivery Devices

- Venturi Mask
 - Includes a valve allowing precise FiO2 delivery (Advantage for COPD patients)
 - 24-40% FiO2
Oxygen Delivery Devices

- Nasal Cannula
 - 24-44% FiO2
- Simple Face Mask
 - 40 –60% FiO2
- Non-Rebreather Mask
 - “reservoir” with one-way valve
 - 60-100% FiO2
- Venturi Mask
 - Includes a valve allowing precise FiO2 delivery (Advantage for COPD patients)
 - 24-40% FiO2

What about CO₂?

Conceptually…

- PaCO₂ is determined by how much CO₂ is produced vs how much is eliminated.
 - and CO₂ elimination depends upon Alveolar Minute Ventilation.
 - and Alveolar Minute Ventilation is Total Minute Ventilation minus Wasted Ventilation
- Hence, the determinants of PaCO₂ are:
 - CO₂ Production
 - Total Minute Ventilation
 - Wasted Ventilation (i.e., “dead space”)
CO₂: Mathematically…

- \(\text{PaCO}_2 \propto \frac{\text{VCO}_2}{[\text{MV} \times (1 - \frac{\text{V}_D}{\text{V}_T})]} \)
 - \(\text{VCO}_2 = \text{CO}_2 \text{ Production} \)
 - Normal = 200 ml/min
 - Increases in \(\text{VCO}_2 \) are not a clinically relevant cause of hypercapnea
 - \(\text{MV} = \text{Minute Ventilation} \)
 - Normal = 5 Lpm at rest
 - Up to 100 Lpm at maximum aerobic activity
 - Obviously, hypoventilation leads to hypercapnea
 - Therefore, if there is no increased \(\text{VCO}_2 \) or decreased \(\text{MV} \), hypercapnea must be due to increased \(\text{V}_D/\text{V}_T \)

Dead Space?

- \(\text{PaCO}_2 \propto \frac{\text{VCO}_2}{[\text{MV} \times (1 - \frac{\text{V}_D}{\text{V}_T})]} \)
 - \(\frac{\text{V}_D}{\text{V}_T} \) = “Dead Space” Ventilation
 - i.e., the percent of each tidal volume which does NOT participate in gas exchange
 - Includes ‘anatomic’ dead space
 - i.e., the air in the trachea and bronchi down to the conducting airways
 - AND includes physiologic dead space
 - i.e., air in alveoli that nonetheless is not participating in gas exchange
 - Three Questions:
 - How much dead space is normal?
 - What are causes of increased dead space?
 - What is the consequence of increased dead space?
V_D/V_T

- Normally:
 - $V_T \approx 500 \text{ cc}$
 - $V_D \approx 1 \text{ cc/pound} \approx 150 \text{ cc}$
 - $V_D/V_T \approx 150/500 \approx 30\%$ of an average TV
- V_D/V_T increases when there is no perfusion to ventilated alveoli. Either due to:
 - Abnormally High Alveolar Pressures
 - i.e., Zone 1 of the Lung in which alveolar pressures exceed the pulmonary vascular perfusion pressures
 - Reduced Perfusion to the Alveoli
 - Volume Depletion
 - Pulmonary Hypertension
 - Pulmonary Embolism

Causes of V_D/V_T

- Increased Alveolar Pressures
 - i.e. PEEP
- Decreased Perfusion due to Volume Depletion or Pulmonary HTN
- Decreased Perfusion due to PE
VD/VT

Why does it matter?

- If increased V_D/V_T, one must increase minute ventilation which increases work of breathing.
- Think of Increased V_D/V_T, whenever:
 - Increased PaCO₂
 - AND/OR
 - Normal PaCO₂ with increased MV

PFT’s – practically speaking....

- Calculate expected values:
 - Age
 - Height
 - Sex
 - Race
- Measure patient values
- Compare
 - “normal” is defined by measured values that are between 80% and 120% of the predicted values
PFT’s: 3 Main Components

- **Spirometry**
 - ↓FEV₁/FVC
 - Obstruction
 - Asthma
 - COPD
 - Bronchiectasis

- **Lung Volumes**
 - ↓TLC
 - Restriction
 - Interstitial Disease
 - Chest Wall Disease
 - Neuromuscular Disease

- **Diffusing Capacity**
 - ↓DLCO
 - Pulmonary HTN
 - Associated with COPD and/or ILD
 - Isolated = Primary Pulmonary HTN

Normal

Positive Methacholine Challenge

Obstruction

Restriction
Learning Objectives

- Oxygenation:
 - Distinguish the various mechanisms of hypoxia
 - Know how to calculate the A-a Gradient
 - Understand oxygen content, delivery, and extraction
 - Recognize the various oxygen delivery devices
- CO₂ Elimination:
 - Know the principles determining one’s CO₂
 - Understand the concept of Dead Space Ventilation
- PFT’s:
 - Be able to interpret PFT’s recognizing Obstruction, Restriction, and Diffusion Impairments